

Chemistry Department Yr12 Induction Work

JCoSS

Bridging the gap between GCSE and Advanced level

Summer 2024

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
(1)	(2)			Key		Г	1.0 H hydrogen 1					(13)	(14)	(15)	(16)	(17)	4.0 He helium 2
6.9 Li lithium	9.0 Be beryllium		relat	ive atomic symbol name	mass -							10.8 B boron	12.0 Carbon	14.0 N nitrogen	16.0 0 oxygen	19.0 F fluorine	20.2 Ne neon
3 23.0 Na sodium	4 24.3 Mg m agnes[um	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	5 27.0 Al aluminium	6 28.1 Si silicon	7 31.0 p phosphorus	8 32.1 S sulfur	9 35.5 C1 chlorine	10 39.9 Ar argon
39.1 K po tassium	40.1 Ca calcium	45.0 Sc scandium	47.9 Ti titanium	50.9 V vanadium	52.0 Cr chromium	54.9 Mn manganese	55.8 Fe iron	58.9 Co	58.7 Ni nickel	63.5 Cu copper	65.4 Zn zinc	69.7 Ga gallium	72.6 Ge	74.9 As arsenic	79.0 Se selenium	17 79.9 Br bromine	83.8 Kr krypton
19 85.5 Rb rubidi um 37	20 87.6 Sr strontium	21 88.9 y yttrium	22 91.2 Zr zirconium	23 92.9 Nb niobium	24 96.0 Mo molybdenun	25 technetium	26 101.1 Ru ruthenium	27 102.9 Rh rhodium	28 106.4 Pd palladium	29 107.9 Ag silver	30 112.4 Cd cadmium	31 114.8 In indium	32 118.7 Sn tin 50	33 121.8 Sb antimony	34 127.6 Te tellurium	35 126.9 I iodine	36 131.3 Xe xenon
132.9 Cs caesium 55	137.3 Ba barium 56	138.9 La * lanthanum 57	178.5 Hf hafnium 72	180.9 Ta tantalum 73	183.8 W tungsten 74	186.2 Re rhenium 75	190,2 Os osmium 7ci	192.2 Ir iridium 77	195.1 Pt platinum 78	197.0 Au gold 79	200.6 Hg mercury 80	204.4 T 1 thallium 81	207.2 Pb lead 82	209.0 Bi bismuth 83	[209] Po polonium 84	[210) At astatine 85	[222] Rn radon 86
[223) Fr francium 87	[226) Ra radium 88	[227) Act actinium 89	[267) Rf rutherfordrJm 104	(268] Db dubnium 105	(271) Sg seaborgium 106	[272] Bh bohrium 107	[270] Hs hassium 108	[276] Mt meitnerium 109	[281] Os dcrmstl1tull 110	[280] Rg roentgenii.m 111	Elem ents w ith atom ic numbe rs 112 -116 have been reported but not fully authent icated					but	
* 58 - 71 Lanthanides			140.9 Pr praseodyrrium 59	144.2 Nd neodymium 60	(145] Pm promett,iun 61,	150.4 Sm samarium 62	152.0 Eu europium 63	157.3 Gd gadolinium 64	158.9 Tb terbium 65	162.5 Dy dysprosium 66	164.9 Ho hOlmium 67	167.3 Er erbium 68	168.9 Tm thulium 69	173.1 Yb ytterbium 70	175.0 Lu lutetium 71		
t 90 - 103 Actinides 58 59 232.0 231.0 Th Pa protactinium 90 91			238.0 U uranium 92	[237) Np neptunium 93;	[244] Pu plutonium 94	[243] Am americium 95	(247] Cm curium 96	[247} Bk berkelium 97	[251] Cf californium 98	[252) ES einsteinium 99	[257] Fm fermium 100	[258) Md melldelevium 101	(259) No no beliu m 102	{262] Lr lawrencium 103			

Advanced level Chemistry is a demanding and exciting course. In order to be prepared for your start in September a number of areas from GCSE Chemistry are needed to be **known and/or understood** thoroughly. To help you make the transition as smoothly as possible we have put together this series of exercises. When you start in September you will be expected to have completed the exercises within this booklet and know the material within. There will be a test on this material approximately one week into the course. It is by no means ALL you need to know but the very foundations of the exciting journey you are about to start. If you have difficulties or confusions there are a number of suggested online resources you could try. There will be opportunities to discuss concerns with staff at the beginning of the year but you should have made significant headway independently.

This booklet contains some undetailed notes to act as a reminder. If you struggle with a particular area you should investigate the suggested support resources, your GCSE notes and your local library. There are exercises for you to complete, the answers are at the end.

Section A is on chemistry aspects, section B on mathematical aspects. These are the foundations and not the entire required skill set.

Contents

Торіс	Page	Additional help sources (linked)
Formula literacy	5-7	You tube writing formulae
Identifying Structure types	8	Youtube How To Speak Chemistrian: Crash Course Chemistry #11
Identifying acids, bases and salts	9-10	
Common reaction types	11-12	
Balancing equations	13-14	You tube Fuse school Balancing eqns Pt 1
		You tube Fuse school Balancing eqns Pt 2
Rearranging equations	15	You tube GCSE Physics support!
Significant figures	16-17	<u>Unit Conversion & Significant Figures : Crash Course</u> Chemistry #2
Standard form	17-19	Writing a number in standard form
Indices	19	
Graphskills	20-21	
Scales	22	

Useful resources:

- o Use your GCSE not es.
- There are a few selected video clips listed above in the contents t abl e. There is a great wealth of other information on the internet (and some of it is useful and/or correct). These resources have been specifically selected for your viewing pleasure!
- o Essential Maths Skills for A-Level Chemistry by CGP ISBN 978 4 78294472 0

WHERE AM I?

Use these warm up questions to evaluate where you are now and what you can do already. If you get something right through guessing, you do not necessarily know it! Check with the answers at the end of the booklet to assess which topics you need to develop your understanding of. The expectation is that youcan do this with ease. It is your responsibility to address any issues and seek support where necessary.

Magnesium reacts with nitric acid to produce a salt and a gas. The salt is used in chemical agriculture and is produced naturally when guano reacts with magnesium containing rocks.

- a) Write a balanced symbol equation reaction for the reaction.
- b) Give the structure types of the two products formed.
- c) The experiment produced 7.00g of the salt. This was 85.0% of the expected yield. Assuming the magnesium was the limiting factor what mass of magnesium was used in the initial reaction?

d) 1.30dm³ of gas was produced in 7.00 minutes. What is the rate of gas production in cm³s⁻¹?

- e) Name a suitable base which would produce the same salt as the original reaction with nitric acid. Write a balanced symbol equation for this reaction.
- f) At 298K the solubi lity of the salt is 125g/100ml in water. What is the mass of the saturated solution at 25°C if the volume of water used is 1.85 x 1-0¹dm³?

It is vital to be formula literate as a chemist. You should be able to name substances from their formulas, and should know or be able to work out the formula of many substances.

You are explected to **KNOW** the information on these two pages and will be tested on it frequently. You **WILL** do far better in Chemistry if you are formula literate.

Eleme	ents			Compound s
H2	hydrogen	Ti	titanium	H ₂ 0 water
He	helium	V	vanadium	NH ₃ ammonia
Li	lithium	Cr	chromium	H ₂ SO 4 sulfuric acid
С	carbon	Mn	manganese	HN0 ₃ nitric acid
N2	nit rog en	Fe	iron	HCI hydrochloric acid
0 2	oxygen	Co	cobalt	NaOH sodium hydroxide
F2	fluorine	Ni	nickel	CO carbon monoxide
Ne	neon	Cu	copper	CO ₂ carbon dioxide
Na	sodium	Zn	zinc	NO nitrogen monoxide
Mg	magnesium	Br ₂	bromine	N0 ₂ nitrogen dioxide
AI	aluminium	Ag	silver	S0 ₂ sulfur dioxide
Si	silicon	Sn	tin	S0 ₃ sulfur trioxide
P4	phosphorus	12	iodine	H ₂ S hydrogen sulfide
Ss	sulfur	W	tungsten	CH₄ methane
Cl ₂	chlorine	Pt	platinum	NaCI sodium chloride
Ar	argon	Au	gold	CuS0₄ copper sulfate
K	potassium	Hg	mercury	AgN0₃ silver nitrate
Ca	calcium			CaC0 ₃ calcium carbonate

	Group	1 ions	Group 2 ions			Group 3 ions			Others	
	Li+	lithium	Mg2+	magne	sium	Al ³ +	alumir	nium	NH₃	ammonium
	Na+	sodium	Ca ² +	calciu	m				Ag+	silver
POSITIVE	K+	potassium	Ba ² +	bariun	n				Cu ² +	copper (II}
IONS									Fe ² +	iron (II)
									Fe ³ +	iron (III }
									Zn ² +	zinc
									Pb ² +	lead
	Group	6 ions		Group	7 ions			Others	;	
	o 2-	oxide		F-	fluoride			O.H-	hydrox	ide
NEGATIVE	S2·	sulfide		Cl-	chloride			N08	nitrate	
IONS				Br'	bromide	9		SO4 2-	sulfate	
				 -	iodide			CO3 ²⁻	carbon	ate
								HC0 ·3	hydroge	encarbonate

Putting together an ionic formula:

The charges must balance. Molecular ions will need to be contained in brackets.

e.g.	Potassium ion K_{τ} Oxide ion 0^2						
Potassium Oxide	There is 1+ and 2-						
	So we need:						
	K+ K+ to balance the 0 2						
	Giving the formula						
	K ₂ 0						
	<u> </u>						
	Aluminium ion Al ³ ₊ Hydroxide ion						
Aluminium Hydroxide	There is 3+ and 1-						
	So we need:						
	OH OH OH- to balance the Al ³						
	Giving the formula						
	AI(OH) ₃						
[Ammonium ion NH $_{4}$ + Phosphate ion PO $_{4}$ ³⁻						
Ammonium Phosphate	Animonium ion $N\Pi_4$ Phosphateion PO ₄ °						
	There is 1+ and 3-						
	So we need:						
	NH/ NH/ NH/ to balance the PO ₄ $^{3-}$						
	Giving the formula						
	(NH4)3P04						
	Lithium ion Li+ Nitride ion N ³						
Lithium Nitride	There is 1+ and 3-						
	So we need:						
	Lt Lt li+ to balance the N ³						
	Giving the formula						
	Li3N						

EXERCISE 1 Write the formulae of the following substances (a mixture of structure types, not just ionic)

1. Sodium Chloride	11. Copper (I} Oxide
2. Sodium Hydroxide	12. Nitrogen
3. Sodium Carbonate	13. Sulfur trioxide
4. <u>Sodium Sulfate</u>	14. Iron (II} Oxide
5. Magnesium Chloride	15. Iron (III) Oxide
6. <u>Carbon Dioxide</u>	16. Ammonium Nitrate
7. Magnesium Hydroxide	17. Ammonium Sulfate
8. Aluminium Chloride	18. Silver
9. Aluminium Sulfate	19. Aluminium Oxide
10. Copper (II} Sulfate	20. Calcium

EXERCISE 2 Give the names of these substances

1. H ₂ O	11. Li ₂ SO ₄		
2. <u>CO</u>	12	. CuSO4	
3. NH ₃	13	. AgNO3	
4. <u>NaH</u>		14. (NH ₄ } ₂ SO ₄	
5. CH ₄		15 . NH4VO3	
6. HNO ₃		16. KMnO₄	
7. NaNO₃		17.Co	
8. <u>CaCl</u> 2		18. KI	
9. <u>SO</u>		19. Co(NO ₃)	
10 . Li ₂ S		20 . KAt	

Structure types often called crystal types

You should also be able to identify what type of structure a substance has from just its name/ formula - this is a **KEY SKILL**.

At GCSE level we are introduced to the concept that non-metals are held together (usually) by covalent bonds and that metal and non-metals are (usually) held together by ionic bonds. This will be developed further at advanced level. But let's get the GCSE sort ed first!

Structure type	Which substances
Monatomic	Group O elements
Simple molecular	Some non-metal elements (e.g. H ₂ , N ₂ , 0 ₂ , F ₂ , P ₄ , S ₈ , Cl ₂ , Br ₂ , 1 ₂)
	Compounds made from non-metals (e.g. NH3, CO ₂ , H ₂ O, C ₆ H12O ₆ , CH ₄)
Giant covalent	Diamond (C), graphite (C), graphene (C), silicon (Si), silicon dioxide (SiO 2)
or Macromolecular	
Ionic	Compounds made from metal+ non-metals (e.g. NaCl, Fe ₂ O ₃ , CuSO ₄)
Metallic	Metals (e.g. Cu, Fe, Al, Na, Ca, Mg, Au, Ag, Pt)

EXERCISE 3 Identify the structure types of the following substances

1.	Sodium oxide	11 . CO	
2.	Graphite	12. Co	
3.	Bromine	13. NaNO3	
4.	Copper nitrate	14 .Fe	
5.	Argon	15 S	
6.	Iron chloride	16 .CaSO 4	
7.	Calcium	17 .H2	
8.	Oxygen	18. SiO2	
9.	Fluorine	19 .Na	
10.	. Water	20. Kr	

Identifying acids, bases and salts

Many substances are acids, bases or salts. It is another **KEY SKILL** for any chemist that you can identify which substances are which (not all substances are acids, bases or salts).

Nature	Which substances					
Acid	Substances that release H (aq) ions when added to water, e.g.					
	Hydrochloric acid (HCI) react to form chloride salts					
	Sulfuric acid (H2S04) react to form sulfate salts					
	Nitric acid (HNO ₃₎ react to form nitrate salts					
	Phosphoric acid(H_3P04) react to form phosphate salts					
Base	Substances that react with acids to form a salt & water (and sometimes CO ₂)					
	Metal oxides (e.g. calcium oxide, iron oxide, copper oxide, nickel oxide, etc.)					
	Metal hydroxides (e.g. sodium hydroxide, calcium hydroxide, potassium hydroxide)					
	Metal carbonates (e.g. sodium carbonate, copper carbonate, calcium carbonate)					
	Metal hydrogencarbonates (e.g. calcium hydrogencarbonate, sodium hydrogencarbonate)					
	Ammonia (NH ₃₎					
Alkali	Substances that release OH-(aq) ions when added to water, e.g.					
	Metal hydroxides (e.g. sodium hydroxide, calcium hydroxide, potassium hydroxide)					
	Ammonia (NH ₃₎					
Salt	Ionic substances made when acids react with bases, e.g.					
	Nitrates (e.g. calcium nitrate, silver nitrate, potassium nitrate, ammonium nitrate)					
	Sulfates (e.g. copper sulfate, sodium sulfate, calcium sulfate, ammonium sulfate)					
	Chlorides (e.g. sodium chloride, potassium chloride, calcium chloride, ammo' nium chloride)					
	Bromides (e.g. lead bromide, potassium bromide, iron bromide)					
	lodides (e.g. potassium iodide, magnesium iodide, calcium iodide)					
	Phosphates (e.g. sodium phosphate, calcium phosphate, ammonium phosphate)					

EXERCISE 4

For each of the substances below:

- a) give its name or formula if missing (use the ion charges on the data sheet to help)
- b) decide whether it is an acid, a base, an alkali or a salt (the colum(s) some may belong to more than category).

Name	Formula	Acid	Base	Alkali	Salt
calcium carbonate					
copper (II) chloride					
sulphuric acid					
sodium sulfate					
silver nitrate					
phosphoric acid	H ₃ PO ₄				
	CaO				
	КОН				
ethanoic acid	CH₃COOH				
sodium ethanoate	CH₃COONa				
	Na NO ₃				
	HNO ₃				
hydrochloric acid					
ammonia					
ammonium nitrate					
ammonium sulfate					
barium hydroxide					
lead bromide					
zinc phosphate	Zn ₃ (PO ₄) ₂				
nickel carbonate					
Copper (II) oxide					
lithium hydroxide					
iron (III) sulphate					
magnesium chloride					

You will very rarely be asked to write word equations at Advanced Level. This is because you are expected to **always** write balanced symbol equations. However, to be able to write the symbol equations you need to <u>know</u> your word equations first!

Ionic equations of some common reactions	
Acid + metal hydroxide salt + water	H+ + O-H H20
Acid + metal carbonate salt + water + carbon dioxide	$2 H++C03-^{2} H_{2}0+CO_{2}$
Acid + metal hydrogencarbonate salt + water + carbon dioxide	$H_{1} + HCO_{3} - H_{2}O + CO_{2}$
Acid + ammonia ammonium salt	H+ + NH3 NH4 ⁺

EXERCISE 5

Write complete word equations for the following reactions:

- 1. Aluminium reacting with sulfur
- 2. Copper burning in oxygen
- 3. Ethane {CH3 CH3) burning completely in oxygen
- 4. Ethanol (CH₃CH₂0 H) burning completely in oxygen
- 5. Lithium reacting with water
- 6. Magnesium reacting in nitric acid
- 7. Potassium oxidising in the air
- 8. The reaction of calcium hydroxide with hydrochloric acid
- 9. The reaction of sodium oxide with sulphuric acid
- 10. Zinc carbonate reacting with hydrochloric acid

Balancing equations

In a chemical reaction atoms are rearranged. They can't disappear or appear from nowhere. You must have the same number of each type of atom on each side of the equation

REMINDER: There are a number of video clips to explain this principle linked on the contents page.

EXERCISE 6 Write balanced equations for the reactions in EXERCISE 5

1.			
2.			
3.			
4.			
5.			
6.			
7.			
8			
9.			
10.			

EXERCISE 7

Write balanced equations for the following reactions (including state symbols):

Remember:	(s) solid	(I) liquid	(g)	gas	(aq)	aqueous - dissolved in water

- 1. Zinc metal reacts with copper (II) sulphate solution to produce solid copper metal and znc sulphate solution
- 2. Solid calcium hydroxide reacts with solid ammonium chloride on heating to produce solid calcium chloride, steam and ammonia gas.
- 3. When lead(II) nitrate is heated in a dry tube lead (II) oxide, nitrogen dioxide gas and oxygen are produced.
- 4. Silicon tetrachloride reacts with water to produce solid silicon dioxide and hydrogen chloride gas.
- 5. When octane (C₈H₁₈) vapour is burnt with excess air in a car engine carbon dioxide and water vapour are produced through a complete combustion reaction.
- All the halogens apart from fluorine react with concentrated sodium hydroxide solution to produce a solution of NaX, NaXO₃ and water . Write an equation for the reaction of bromine with concentrated sodium hydroxide.
- 7. The elements of group 1 of the periodic table all react with water to produce a solution of the metal hydroxide and hydrogen gas. Write an equation for the reaction of lithium with water.

Rearranging allows us to show the same relationship in a different way.

moles concentration x volume

and

concentration $= \frac{moles}{l}$ vo ume

and

$$volume = \frac{moles}{concentrativn}$$

When rearranging, whatever you do to one side of the equation you must do to the other side.

$$mass = Mr \ge moles$$

Rearranging to make Mr the subject involves+ both sides by moles

So,

EXERCISE 8

Rearrange the following equations to give the letter shown as the subject:

q = mcT	т=	^{x2} + bx - 1	b=
pV - nRT	R=	$x - b^2 - 4ac$	b=
G = H-TS	S =	2a - 3(b - 4c)	b=
f = ma	m=	×2 + b - 1	X=
$d - \frac{g}{v}$	$\nabla =$	$x - b^2 - 4ac$	a=
r =t	t=	2a - 3(b - 4c)	C=
$K_{C} = \begin{bmatrix} P C I_{3} \\ [P C I_{5}] \end{bmatrix}$	[Cl ₂] =	Hlog K	K=

You will generate many long numbers in chemistry over the next two years! It is important to round these correctly using significant figures. When you make a measurement in chemistry you can indicate how uncertain it is by the number of significant figures. For example a volume of 5.0 cm³ has been measured using equipment which can be read to 0.1 cm³, whereas a volume of 5.00 cm³ has been measured using equipment which can be read to 0.01 cm³. The numbers are different.

To find the number of significant figures of a value

- Count the number of significant figures from the first non-zero digit.
- Stop at the last non-zero digit OR the last digit after a decimal point.

484.23	5 sig fig	
20.9	3 sig fig	
290	2 sig fig	
29.0	3 sig fig	(A zero after a decimal point is significant)

EXERCISE 9

To how many significant figures are these values recorded?

1.74	133.0	
436	3.6 x 10.6	
5.38000	4.25 × 10 ⁷	
9.20	82 x 10 ⁹	

When combining numbers in a calculation (using multiplication and division)your final answer can be no more certain than the least certain of the information you used to calculate the value.

Example: Calculate the number of moles in 43.85g of Mg (Ar= 24.3)

$$Moles = \frac{mass}{Ar}$$
$$\frac{43.85}{24.3}$$

the calculator value is 1.804526749 We need to round the value to the data value with the fewest significant figures in the calculation.

= 1.80 to 3s.f.

EXERCISE 10

Give the answers to these calculations to the appropriate number of significant figures.

- 1) What is the mass of 2 moles of water $\{H_20\}$ Mr 18.0?
- 2) What is the rate of a reaction which produces 25 ml of gas in 42 seconds?
- 3) A reaction produced a 3.886g yield of cyclohexene. The theoretical yield was 4.25g. What is the percentage yield of cyclohexene?
- 4) How much mass is lost per second if a reaction loses 23.995gin 48 seconds?

Standard form is used to express very large and very small numbers.

5366000 5.36 x10⁶ 0.0000000897 8.97 x 10-⁹

Standard form must always be presented like this:

$A \times 10^n$

Where A is a number between 1 and 10

and n is the number of places the decimal point has 'moved'.

The same number of significant figures must be kept when converting between forms.

EXERCISE 11

Convert these values to standard form

156 000 000	0.03445	
0.000345	481 000	
100.3	0.000689012	

Convert these values to ordinary form

6.02 × 10 ³	3.65 × 106	
4.2 × 10·2	6.778 × 10 ^{.3}	
1.99 × 105		

Prefixes

Unit prefixes are used to give information about the standard form of a value. You will often need to convert different units for different equations, or just to make them easier to handle.

The most common in advanced level chemistry are:

Prefix	Conversion fact or	Symbol
milli	10.3	m
centi	10"2	С
deci	10.1	d
kilo	103	k

I 7

To convert a number to a base unit, convert the number into standard form and then multiply by the conversion factor.

This diagram shows the common mass conversions:

Other common conversions are between these **volume** prefixes:

18

EXERCISE 12 Convert these values into the units given, give answers in standard form.

	in grams		in cm ³
13.5 tonnes		0.025dm ³	
0.000235kg		14.3m ³	
315mg		0.000412m ³	
0.567t		256dm3	

Indices or powers tell you how many times to multiply a number by it self.

 $3^{6} = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$

A negative power is the same as 1 over the positive version of the power

 $A^{-n} = \frac{1}{A^n}$ [r² = <u>3</u> = 0.111 to 3s.f.

When multiplying two numbers with the same base add the powers together

$$A^n \times A^p = A^{n+p}$$

When dividing two numbers with the same base, subtract the powers.

$$\frac{A^n}{A^p} = A^{n-p}$$

And finally,

$$(A^n)^p = A^{np}$$

EXERCISE 13

<i>az</i> a3	$\begin{array}{c} a - 6 \\ a^7 \mathbf{x} \mathbf{a}^2 \end{array} =$	
$a^{2} \frac{x}{az} \frac{a^{3}}{az} =$	$ab-{}^{3}c-{}^{1}-$ (<i>ab-3</i>)3 -	

Graphs show us the relationship (or lack of) between variables.

General rules are listed below, there may be deviations from these on occasion but changes will usually be highlighted to you.

- o Identify your independent variable (x axis) and the dependent variable (y axis).
- o Choose a sensible scale and if necessary allow for extrapolation.
- o Draw and label your axes including the units (in the form variable/units)
- o Plot your points with a neat sharp point.
- o Draw a line of bestfit.

Then you need to be able to manipulate and use that data!

EXERCISE 14

Experiment: Marble chips were added to a conical flask containing 2.0 moldm ³ hydrochloric acid. The mass change was measured over time and recorded in a table.

Time/s	Loss in mass/g
0	0.000
10	0.018
20	0.048
30	0.081
40	0.116
50	0.143
60	0.158
70	0.165
80	0.165
90	0.165

- 1) Draw a graph of this data
- 2) How long would it take to lose 0.150g of mass?
- 3) Between 20 and 50 seconds what is the

rat e of mass loss?

4) What is the rate of mass loss between75 and 85 seconds?

Experim ent: Sodium carbonate was reacted with nitric acid and the gas produced collected over time. The following results were obtained:

Time/s	Volume of gas produced/ cm ³
0	0
10	8
20	28
30	52
40	78
SO	87
60	106
70	123

- 1) Plot a graph of time/s against volume of gas produced / m³.
- 2) What would you expect the gas volume to be at 80seconds?
- 3) What would you expect the gas volume produced to be at 43 seconds?
- 4) What would you expect the gas volume to be at IOseconds?
- S) What is the rate of gas production between 42 and 62 second s?

ANSWERS TO EXERCISES

Answe	rs Ex 1 Writing	g formula	e from names:						
1.	Sodium Chloride		NaCl	11.	Copper(I) Oxide		Cu20	C	
2.	Sodium Hydro xic	de	NaOH	12.	Nitrogen		N2		
3.	Sodium Carbona	te	Na2C03	13.	Sulfur trioxide		S03		
4.			Sodium Sulph ate	Na2	2S04		14.	Iron (II) Oxide	FeC
5.	Magnesium Chl o	ride	MgCl ₂	15.	Ir on (III) Oxide		Fe20	3	
6.	Magnesium Nitra	ate	Mg(N03)i	16.	Ammoni um Nitra	ate	NH4	N03	
7.	M agnesium Hydr	o xide	Mg(OH)i	17.	Ammonium Sulp	hate	(NH4	.)i S0 4	
8.	Aluminium Clhor	ride	AICI3	18.	Silver		Ag		
9.	Aluminium Sulph	ate	Al2(S04h	19.	Aluminiu m Oxide	9	Al ₂ 0	3	
10.	Copper (II) Sulpha	ate	CuS04	20.	Calcium		Ca		
Answer	s Ex 2 Writin	g names	from formu lae:						
1.	H20	Water		11.	Li2S04	LithiumS	sul fate	;	
2.	CO2	Carbon I	Dioxide	12.	CuS04	Copper S	Sulfate)	
3.		NH3		Amr	nonia	13. AgN	103 S	ilver nitrate	
4.	NaH	Sodium	Hydride	14.	(NH4)i S04	Ammoniu	um su	lphate	
5.	CH4	Methan	e	15.	NH4V03	Ammoni	um va	anadate	
6.	HN03	Nitric Ac	id	16.	KMn0 4	Potassiu	m Ma	anganate	
7.	NaN03	Sodium	Nitrate	17.	Co	Cobalt			
8.	CaCl2	Calcium	chloride	18.	кі	Potassiu	m lod	lide	
9.	S02	Sulphur	Dioxide	19.	Co(N0 3)i	Cobalt N	itrate		
10.	Li ₂ S	Lith ium S	Sulfid e	20.	k'.Al	Potassiu	m Asta	atide	
Answer	s Ex 3								

1.	Sodium oxide	Ionic	11. CO	Simple Molecular
2.	Graphite	Giant Covalent	12. Co	Monatomic
3.	Bromine	Simpl e Molecular	13. NaN03	Ionic
4.	Copper nitrate	Ionic	14. Fe	Monatomic
5.	Argon	Monatomic	15. Sa	Simpl e M o le cular
6.	Iron chloride	lon ic	16. CaS04	Ionic
7.	Calcium	Metallic	17. H2	Simple Molecular
8.	Oxygen	Simple Molecular	18. Si0 2	Giant Covalent
9.	Fluorine	Simple Molecular	19. Na	Monatomic
10.	Water	Simple M olecular	20. Kr	M onat omic

Answers Ex 4

Name	Formula	Acid	Base	Alkali	Salt
calcium carbonate	CaC03				
copper (II) chloride	CuCl2				
sulphuric acid	H ₂ S04				
sodium sulfate	Na2S04				
silver nitrate	AgN0 3				
phosphoric acid	H3P0 4				
calcium oxide	cao				
potassium hydroxide	КОН				
ethanoic acid	CH3COOH				
sodium ethanoate	CH3COONa				
Sodium nitrate	NaN0 3				
nitric acid	HN03				
hydrochloric acid	HCI				
ammonia	NH3				
ammonium nitrate	NH4N0 3				
ammonium sulfate	(NH }i S04				
barium hydroxide	Ba(OH)i				
lead bromide	PbBr 2				
zinc phosphate	Zn3(P04)i				
nickel carbonate	NiC03				
Copper (II) oxide	CuO				
lithium hydroxide	LiOH				
iron (III) sulphate	Fe2(S04h				
magnesium chloride	MgCl ₂				

Answers Ex S and 6

Aluminium + Sulfur Aluminium Sulfide Copper + Oxygen Copper (II) Oxide Ethane + Oxygen Carbon dioxid e + Water Ethanol + Oxygen Carbon dioxide + Water Lithium hydroxide + Hydrogen Lithium + Water Magnesium nitrate + Hydrogen Magnesium + Nitric acid Potassium Oxide Potassium + Oxygen Calcium Hydro xide + Hydrochloric acid Calcium chloride + Water Sodium Oxide + Sulphuric acid Sodium Sulphate + Water Zinc Carbonate + Hydrochloric acid Zinc chloride + Carbon dioxide + Water

2AI + 3S Al₂S3 Cu + ½02 CuO CH3CH3 + 31/202 2C02 + 3H20 CH3CH20 H + 302 2C0 2 + 3H20 Li + H20 LiOH + ½ H2 Mg + 2HN03 Mg(N03)i + H2 2K + ½02 K20 Ca(OH)i + 2HCI $CaCl_2 + H_20$ N a20 + H2S04 Na₂S04 + H₂0 $ZnCl_2 + CO_2 + H_20$ ZnC0 3 + 2HCI

Ex7

- 1. $Zn(s) + CuSO_4(aq)$ $ZnSO_4(aq) + Cu(s)$
- 2. $Ca(OH)z(s) + 2NH_4CI$ $CaCli(s) + 2H_2O(g) + 2NH_3(g)$
- 3. $Pb(NO_3)i(s)$ $Pb O(s) + 2NO_2(g) + O_2(g)$
- 4. $SiCl_4(1)+2H_2O(1)$ SiO 2(s) + 4HCl(g)
- 5. CaHI s(g) +12½O2(g) 8C02(g) + 9H2O(g)
- 6. $3Br_2 + 6NaOH(aq)$ SNaBr(aq) + NaBrO₃(aq) + 3H₂O(1)
- 7. 2Li(s) + 2H O(I) = 2LiOH(aq) + Hi(g)

Ex8

q = mer	T=.!! me	$x^2 + bx = 1$	$b = -\frac{1-x^{2}}{x}$
pV = nRT	R=E.". 	x = b' - 4ac	b = x + 4ac
G = H-TS	$S \equiv \frac{H-G}{T}$	2a = 3(b-4c)	$b = \frac{^{2}a}{^{3}} + 4c$
f = ma	$m = \begin{bmatrix} \\ a \end{bmatrix}$	$x^{2} + b = 1$	x=-lf=b
$d = f!_{\overline{V}}$	V=!!.	$x = b^2 - 4ac$	$a = \frac{b^2 \cdot x}{4c}$
$r = \frac{1}{t}$	t ≓'.!	2a = 3(b-4c)	b -2a 12
$\boldsymbol{\mathcal{K}} \boldsymbol{\mathcal{C}} = \begin{bmatrix} P \ Cl_{1} l[Cl_{2}] \\ [PCl_{5}] \end{bmatrix}$	[Ch] Kc[PCI s] (PC1 ₃]	H = -log K	К=10-Н

Ex9

1.74	3	133.0	4
436	3	3.6 × 10∙6	2
5.38000	6	4.25 × 10 ⁷	3
9.20	3	82 _x 10 ⁹	2

Ex 10

- 1) 40g to 1 sf (sf very important!)
- 2) 0.60 m1 \cdot s 1 to 2 s f
- 3) 91.4% to 3sf
- 4) 40.S0g to 2sf

Exll

156 000 000	1.56 × 10 ⁸	0.03445	3.445 × 10-2
0.000345	3.45 _× 10· ⁴	481 000	4.81 × 10 ⁵
100.3	1.003 × 10 ²	0.000689012	6.89012 × 10-4

6.02 × 10 ³	6020	3.65 × 10 ⁶	3650000
4.2 × 10· ²	0.042	6.778 _x 10- ³	0.006778
1.99×10^5	199000		

Ex 12

	in grams		in cm ³
13.5 tonnes	1.35×10^{7}	0.025dm ³	2.5×10^{1}

0.000235kg	2.35 × 10-1	14.3m ³	1.43 × 107			
315mg	3.15 × 10-1	0.000412m3	4.1 2 x 102			
0.567t	6.67 x 10 ⁵	256dm3	2.56 x 10 ⁵			
EXERCISE 13						

XERCISE 13

az a3 =	a - 1	a-6 a ⁷ xa ²	a - 1 s
$\begin{bmatrix} a^2 x a^3 \\ a^2 \end{bmatrix} = \frac{1}{2}$	a3	a b- ³ c- 1 - (a b - 3) 3 -	a-2b6c-1

EXERCISE 14

Ex 15 Reading Scales 1) 0.23 2) -0.06 3) -2.6 4) 6.65cm³ 5) 27.75 cm³ 6) 87.5 °C 7) 36 .50 cm³ 8) 3300cm¹ 9) 2.6ppm

WHERE AM I? ANSWERS

- a) Mg + 2HNO3 -+ M g(N O3)i + H2
- b) Magnesium nitrate is an <u>ionic</u> compound, hydrogen is a <u>simple molecular</u> substance.
- c) : $\frac{0^{\circ}}{50} = 8.24$ g of magnesium nitrate is the theoretical yield

Therefore, moles of Magnesium nitrate and thus Magnesium= $\frac{1}{148.3}$ = 0.0555

Mass of magnesium = $0.0555 \pm 24.3 \equiv 1.35g$ to 3sf MUST BE TO 3sF

- d) $\frac{1300}{420} = 3.10$ cm ³ s⁻¹ MUST BE TO 3SF
- e) Magnesium oxide or Magnesium hydroxide
- f) MgO + 2HNO3 + Mg(N O3h + H O
 or Mg(OHh + 2HNO3 + Mg(NO3h + 2H2O
 or MgCO3 + 2HNO3 + Mg(N O3h + H2O + CO2
- g) 416g MUST BETO3 SF